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The dimension (and signature) of  space is a result of distances being real numbers 
and quantum mechanical state functions being complex ones; it is an inescapable 
consequence of quantum mechanics and group theory. So nonrelativistic 
quantum mechanics cannot be complete (it requires ad hoc additional assump- 
tions) and consistent (nor can classical physics), leading to relativity, quantum 
mechanics, and field theory. Implications of the constraints of consistency and 
physical reasonableness and of group theory for the structure of these theories 
are considered. It appears that there are simple, perhaps unavoidable reasons 
for the laws of physics, the nature of the world they describe, and the space in 
which they act. 

1. INTRODUCTION 

Physics, ultimately, is based on experiment. However, what experiment 
has revealed is that the physical universe is governed by simple, coherent 
lawsmsuggesting that coherence places strong restraints on the laws. Here 
we consider how some of  the most basic properties of physical theory, 
which seem to follow inescapably from experiment, determine fundamental 
properties of space-- the dimension and signature--and imply strong con- 
straints on how we describe nature. 

In the next section the dimension and signature of space (Mirman, 
1984a,b, 1986, 1988a,b) are found, using simple group-theoretic results. 
They are not only unique, but in a sense improbable. There are several 
conditions, each requiring integer solutions. There seems no reason why 
any should have such solutions. Yet all do, and the values are the same. 
This has implications that one can only wonder at but certainly not explain. 

Higher dimensional spaces are not possible. Yet there are theories 
using them. Is there a contradiction? Consistent theories giving a partial 
description of a subject can be constructed. However, consistent partial 
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descriptions do not imply that consistent complete theories are possible. 
Theories for higher dimensional spaces may be consistent descriptions of  
what they have treated. But consistent complete theories are not possible 
in higher dimensional spaces. Incomplete theories can be consistent, but 
not completed. 

This does not imply that the work using higher dimensional theories 
is incorrect. That the inconsistencies were not previously discovered means 
only that the aspect of the theories in which they appear have not yet been 
considered. 

The view of physics presented here is highly conservative; the funda- 
mental properties of space and matter that almost everyone would accept 
as true and necessary are so-- the  results follow from the most basic prin- 
ciples of  quantum mechanics. I use the invariance of physical laws (such 
as the Dirac equation) under rotations and the need for quantities--mass, 
length, angle, and so on- - tha t  are invariant under these transformations. 
The results obtained thus hold for the standard theories of physics (such 
as the Dirac equation), although they are so general that it is difficult to 
imagine theories (that are in agreement with the broadest experimental 
results, such as invariance) for which they would not hold--such theories 
may not be possible. It may be that only with the conditions everyone 
assumes is physics possible. 

That the signature of  space is determined (the dimension is 3 + 1, not 
4) means that quantum mechanics requires relativistic quantum mechanics. 
In Section 3 I discuss why. But this raises the question of  whether classical 
physics is possible in a space of  ditterent dimensionality, and indeed whether 
it is possible at all. I do not think so and explain (the meaning of my 
negative view) in Section 4. 

If  quantum mechanics and relativistic quantum mechanics (and field 
theory) are all required by consistency and coherence, then (some of) their 
properties should also be. How can we find these? The arguments, which 
require detailed analyses, are only outlined. But it could be, as discussed 
in Section 5, that all their properties may follow from the most fundamental 
requirements, such as consistency. The postulates of  these theories are 
experimental, but perhaps not only that. This is worth more discussionthan 
it has received. A reason for this section Jis to stimulate that discussion. 

The assumptions on which the results are based are stated explicitly; 
but, as in any physical theory, the most fundamental ones are usually those 
not realized. It is important to try to make these explicit (so making the 
assumptions on which quantum mechanics is based explicit). To stimulate 
this analysis, we indicate in Section 6 what some of these may be. Of course 
the extensive discussion and consideration that this requires is not possible 
here; the purpose of this section is not to give all assumptions, but rather 
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to indicate some of the topics needing further study. Undoubtedly the most 
important of these topics are still hidden; it is unlikely that anyone would 
claim to understand the real reasons for quantum mechanics. 

In Section 7 results and implications are summarized. 

2. THE DIMENSION 

Quantum mechanics describes any object by a complex function over 
space, the state function; the coordinates on which it depends are real. If 
we transform (rotate) the coordinates, the state function is also transformed 
(its components are mixed); a function describing orbital angular momen- 
tum along the z axis goes into a different function in the new coordinate 
system; otherwise it would (incorrectly) give the angular momentum along 
the z' axis. 

Suppose that space were n-dimensional (with any signature). For any 
rotation in the xy plane there is a transformation, one for each (small) 
angle, of the state function. For rotations in the yz plane there is another, 
different, set of transformations, and so on. Further, the state-function 
transformation corresponding to the product of two rotations should equal 
the product of the two state-function transformations that go with the two 
rotations. So the algebras of the groups transforming the coordinates and 
the state functions must be isomorphic (the groups are then homomorphic).  

The state functions are complex, and so are transformed by a unitary 
group (the factor group obtained by dividing out any subgroup independent 
of rotations). For reasons discussed below, they cannot be transformed only 
by a subgroup of a unitary group. The coordinates on which the state 
function depends are real, and so are transformed by an orthogonal 
(rotation) group. 

Thus, in this n-dimensional space there must be a unitary group whose 
algebra is isomorphic to the algebra of the n-dimensional orthogonal group 
O(n). This is possible only for one value of n, so it is the only one that 
allows quantum mechanics. 

A necessary, but not sufficient, condition for two algebras to be iso- 
morphic is that the numbers of commuting generators, the ranks (denoted 
by v's), and the orders, the numbers of generators, be equal. We briefly 
review the formulas for the orders. 

Group O(n) consists of  products of rotations in perpendicular planes. 
Each axis lies in n - 1 planes. There are n axes, giving n(n - 1) planes, each 
counted twice. The number of planes, and generators, is n ( n - 1 ) / 2 .  
Rotations in intersecting planes (xy and yz) do not commute, those in 
nonintersecting planes (xy and wz) do. Every plane in which the y axis lies 
intersects the xy plane. However, z, provided there are additional 
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dimensions, lies in a plane not intersecting xy. For the number  of  commuting 
operators count every other axis, giving n/2 for n even and ( n -  1)/2 for 
n odd. Addition of two dimensions adds one more plane. So n = 2 v  or 
n = 2 v + 1 and the number  of  generators is v(2 v - 1) for n even and v(2 v + 1) 
for n odd. 

The unitary group on a state function of n components has n - 1  
transformations varying the n -  1 phases (and one for the overall phase) 
plus n(n - 1)/2 rotations. The relative phase of  the two components affected 
by a rotation can be changed after the rotation by another  rotation, giving 
an additional n ( n - 1 ) / 2  transformations, f o r  a total of  n 2. But the one 
changing the overall phase commutes with the others. Discarding it gives 
n 2 - 1  generators of the unimodular  unitary group in n dimensions. How 
many commute?  The phase changes do. Rotations in intersecting planes 
and a phase change and rotation involving the same variable do not. The 
largest commuting set is that of  the phase changes (n - 1  are independent).  
There are n - 1 (= v) commuting generators. 

So the orders of  the unitary and orthogonal algebras are ( v + l )  2 -  1 

and v(2v + 1), respectively. 
Thus, ( v + l ) 2 - 1  = v ( 2 v •  1), giving v =  1 (for B), and 3 (for D).  For 

v = 1, SU(2)  and 0(3)  and also SU(1, 1) and 0(2 ,  1) are homomorphic  
(their algebras are isomorphic).  For v = 3 there is a homomorphism between 
SU(4) and 0(6) .  Besides groups over real numbers,  there are ones over 
complex numbers. The algebra of  0 (4)  is not simple, but the complex 
extension is the algebra of  the orthogonal group (the Lorentz group); 
complex state functions transform under SL(2, C). So (3 + 1)-dimensional 
space satisfies. A (2+ 2)-dimensional space does not satisfy, for the group 
to which 0(2,2)  is homomorphic  is not simple. These are all the homo- 
morphisms; see Barut and Raczka (1965). 

The isomorphism requirement gives a stronger condition. First note 
that if  a function is invariant under the algebra of  O(n), it is invariant 
under that of  CO(n), the complex (pseudo-) orthogonal group; the 
orthogonal group with complex parameters.  I f  we expand a group element 
(schematically) R (0) = ! + OJ +. �9 �9 where J represents the elements of  the 
algebra, then for CO(n), R (O)=I+OrJ+iOiJ+ ' . . ,  and we see that the 
generators are the same for the two groups, since R is orthogonal whether 
0 is real or complex. 

Now a k-component  state function in n space is a representation basis 
state of  a unitary-group algebra whose transformations are induced by 
CO(n) transformations.  So the space must allow an isomorphism between 
the algebras of  CO(n) and that of  a unitary group that mixes blocks of  
components  (not necessarily all). Another unitary group mixes blocks 
(of size k/j); it does not commute with CO(n), otherwise it would give a 
direct product  and we would consider the factor group. So that SU(k)) 
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and CO(n) x SU(k / j )  algebras are isomorphic, both giving the full set of 
continuous transformations of the state function. 

What are k, j, and n ? The numbers of parameters and of commuting 
generators must be equal. For the parameters this gives 2p(2v + 1) + (k / j )  2 = 
k 2, and for commuting generators v + k/ j  = k. These must have simultaneous 
solutions for j, v, and k, and these all have to be integers. [There are no 
solutions if the SU(k / j )  term is missing.] They have only one integer 
solution, k = 4 , j  = 2, and v = 2, with a minus sign. This gives a (3 + 1)-space. 
Since 0(4)  is not simple, a 4-space is not possible, for these equations 
would have to have solutions for two independent 3-spaces, and they do not. 

For the Dirac equation, coordinates transform under CO(n), solutions 
under U(k) and also under the product of SU(k/2)  and the unitary group 
(if any) homomorphic to CO(n). The invariance group is (at most) 
S U ( k / 2 ) x C O ( n ) .  With n = 2 v  (or n = 2 v + l ) ,  CO(n) has 2 v ( 2 v + l )  
parameters. Now the solution is a spinor for which (Boerner, 1963) k = 2 ~. 
Thus the number of parameters of U(k/2) is 2 (2~-2), of U(k) is 22", and 
so of the invariance group of the equation [the sum of the numbers for 
CO(n) and U(k/2)] is 2(2~-2)+4v24-2v. 

The numbers of parameters of the groups for the equation and the 
solution are equal (only) for v = 2 and an even-dimensional space, so n = 4 
[but not for n = 3, so not for 0 ( 3 ) x  0(3) ,  so not for 0(4) ;  the group is 
0(3 ,  1) and space has dimension 3 + 1]. Also, the numbers of commuting 
generators have to be equal, giving 2 + k / 2 =  k. This is satisfied only in 
(3 + 1)-space. Thus, the Dirac equation is, and can be, form invariant under 
orthogonal transformations in (3 + D-space only. 

Interactions (nonlinear terms) act as U(k) transformations on state 
functions, and so on solutions to the linear equation (say, in-states) they 
give functions (out-states) that, in the absence of the required isomorphism, 
are not solutions (and not expandable in terms of solutions--the space 
given by interactions is larger than that of these solutions). If in-states obey 
the free-particle equation, there are outgoing one-particle states (with the 
same spin) that do not obey it. The equation corresponds to a Hamiltonian 
eigenvalue equation, so the resulting states are not eigenfunctions of the 
(same) Hamiltonian (as the in-states--and possibly of none). This implies 
they do not have definite energy (or momentum) and suggests that there is 
no group for which the state functions are eigenfunctions of physically 
meaningful representation labels--indicating that the formalism is in- 
consistent. This implies, without requiring invariance or other transforma- 
tion properties of the equation, that the nonlinear Diract equation has no 
solutions in spaces other than 3 + 1. 

Thus, (3+l)-dimensional  space is the only one in which the basic 
requirements of quantum mechanics can be met. What would go wrong if 
the dimension were other than 3 + 1 ? 
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If  the algebras were not isomorphic, the orthogonal and unitary trans- 
formations could not be correlated, so spin or orbital angular momentum 
components in various coordinate systems could not be consistently related. 
If  the orthogonal had more elements than the unitary algebra, there  would 
be no state-function transformations corresponding to rotations around the 
x axis, say. Thus, if the angular momentum was along z in one frame, it 
would be described by the same function in another frame, and so would 
be along z'. Both frames are equally good; either the description in one 
frame would be experimentally wrong, or the experimental result would 
depend on how we wish to describe it. If  there were no isomorphism, the 
result is ridiculous; physics would be inconsistent. 

If we arbitrarily related the generators of the two algebras (but there 
are different numbers of  them) and then we wrote a rotation as a product  
of  rotations, different products giving the same rotation would give different 
components for the spin state function. An experimenter making measure- 
ments in two systems gets one result, but making an intermediate measure- 
ment, gets a different one (for the angle between spin and velocity, say) 
with the value depending on what intermediate measurements are made; 
the final coordinate system is the same, but the values are not. 

Consider an observer who sees a particle's spin and momentum (or 
magnetic field and spin) parallel, queries rotated observers, who see different 
angles, and finally returns to its own frame and sees different angles, 
depending on the queries. The observers compare obervations and get 
conflicting results for the same quantity as seen by the same observer, 
depending on what comparisons are made. So in a Stern-Gerlach experiment 
the number and intensities of  lines on the screen depend on the angle 
between the spin and the field (Mirman, 1969). Thus, an observer sees 
different numbers of lines depending on whether and how he queries rotated 
observers, although no actions have been performed on the observer, the 
particles, or any part of  the experiment-- the queries are all mathematical 
transformations. 

Transformations might be correlated using an isomorphism between 
the algebras of  the orthogonal group and that of a subgroup of a unitary 
group. Then there are transformations not in the subgroup, whose product 
is, that give a change of  the state function similar to that induced by rotation, 
so changing the spin direction. A unitary transformation gives a different 
observer (Mirman, 1979), who relates coordinates by an orthogonal trans- 
formation. There are other unitary transformations, so observers, to which 
there can correspond no orthogonal transformations (the multiplication 
rules differ). They see different scalar products-- there is no consistent way 
of transforming say, momentum--and ,  in a Stern-Gerlach experiment, 
different numbers of lines. 
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Thus, consistent predictions and laws of physics seem impossible. It 
is fortunate we live in a space of 3 + 1 dimensions. 

The number of state function components determined by all these 
conditions (on both the unitary group and its representation and on the 
Clifford algebra representation) is integral only for dimension 3 + 1, but for 
this they all give not only an integer, but the same one. All are satisfied in 
a space of 3 + 1 dimensions only. 

But for these remarkable coincidences, if any of these numbers were 
changed by even 1, no universe would be possible. Or would we just have 
a different formalism? 

3. THE PROBLEMS WITH NONRELATIVISTIC QUANTUM 
MECHANICS 

These arguments give the dimension, and signature, of space; quantum 
mechanics requires relativity. Is nonrelativistic quantum mechanics in- 
consistent and incomplete? 

Consistent theories are based on a few complete, general postulates. 
Phenomenological theories need ad hoc concepts and postulates and rules 
designed only to get correct answers. These, while useful, are limited and 
cannot describe (perhaps without further specific rules) phenomena other 
or more general than those for which they are designed. They do not allow 
a coherent treatment of the phenomena and consistent incorporation of the 
concepts and assumptions on which they are based. They are really approxi- 
mation schemes. 

Nonrelativistic quantum mechanics is not a complete, consistent theory. 
Here we do not consider the requirements for such a theory (since there 
are no such theories known), but only wish to show that there are in- 
consistencies, and that ad hoc assumptions are needed, and used, for this 
theory. It is an approximation scheme. To show this, we need not consider 
how to show when a theory is more than that (so we also need not, and 
do not, consider whether nonrelativistic quantum mechanics is incomplete 
in other ways). 

The theory is based on the Galilei group (Sudarshan and Mukunda, 
1974); why can this not give reasonable physics? The arguments here (and 
for classical physics) are not as strong as for the dimension where funda- 
mental aspects of well-established theories gave inconsistencies in all but 
3+1  dimensions. But the problems here, which one cannot show as 
rigorously to be unavoidable, are very real and likely inescapable. 

Taking (some) of the Galilei group generators as xi, pi, and Ji, we 
define L~ = %k • jPk and St = J~ - L i  ; S and L commute. Replacing the J 's  
by the L's gives another realization of the group algebra; the S's form an 
SU(2) algebra. The basis functions of this (expanded) set of generators can 
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be written, suppressing eigenvalues not relevant, a s / l ) / s ) ,  where the first 
term transforms under the full Galilei group (whose generators are L's, not 
J ' s ) ,  the second under the SU(2) algebra of  the S's. Then Si = J i - L i  
transforms as a vector under  the J ' s ;  but this is an extra assumption. The 
group does not require this expression for S. The group generators can be 
taken as the L's; the S's are then Galilei-invariant. 

So we can rotate coordinates without rotating angular momentum.  
Thus, two observers measure the momentum,  direction of  orbital angular 
momentum,  and spins and see different momentum components,  but angular 
momentum and spin the same; at best quite undesirable. Angular momentum 
is an internal variable in conflict with the definition of orbital angular 
momentum as resulting from motion in space. This indicates an in- 
consistency in nonrelativisitic quantum mechanics which is avoided by ad 
hoe postulates. We do rotate angular momentum,  because particles are 
really governed by relativistic equations that have the effect in the non- 
relativistic limit of  requiring us to choose S to have the commutat ion 
relations of  a vector with J=- L+S.  

Thus, it is not the group structure, but the extra assumption S = J -  L 
that gives the t ransformation properties of  angular momentum.  The 
mathematics of  nonrelativistic quantum mechanics does not require this 
assumption, so internal orbital angular momentum can be a scalar giving 
unreasonable physical results. 

A particle can have spin (relativity is not needed); but the trans- 
formations of  it allowed by the mathematics (but ruled out by extra assump- 
tions) give inconsistencies with the definitions and physics. The problem is 
not the appearance of spin (the difficulties arise with orbital angular momen-  
tum and with linear momentum),  but what transformations are allowed by 
the formalism. 

The representation describing a particle with spin, or orbital angular 
momentum,  say, a moving H atom, is a direct product of  space and spin 
representations. So space rotations do not induce spin transformations (the 
free-particle Schr6dinger equation does not link spin components;  these 
are internal variables). Also, for two particles the representation is a direct 
product,  so the momentum of one can be rotated without rotating that of  
the other. 

The direct product  can be reduced to a sum over irreducible representa- 
tions. But this does not eliminate the problem. The basis vectors of  an 
irreducible representation are sums of products of  two basis vectors each 
from a different realization (say, orbital angular momentum and spin). Since 
one can be changed, but not the other (taking a sum of  products does not 
prevent this), the irreducible basis vector does not transform properly, again 
implying inconsistencies. 
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For noninteracting particles the Poincar6 group representation is a 
direct product. Does this not give the same difficulty? The classical case 
(Sudarshan and Mukunda, 1974, p. 466) shows why not. The system's 
Casimir invariants involve products of variables for different particles. For 
a rotated observer the invariants, and so the products, are unchanged, so 
both momenta (and the angular momentum) have to be rotated. Relativistic 
physics, unlike the nonrelativistic case, couples the quantities. The structure 
of the Poincar6 and Galilei groups differ, leading to the difficulties of a 
coherent physical theory based on the latter. 

This can be seen in other ways. A boost rotates the spin (Wigner 
rotation; note also the Thomas precession). A rotation obtained from a 
series of boosts rotates angular momentum. Thus, unlike the Galilei group, 
coordinate rotations must transform angular momentum. And the Dirac 
equation, to be invariant, requires that the 3,'s, so the solution, be trans- 
formed; a coordinate transformation rotates spin. 

In nonrelativistic quantum mechanics we cannot even say that the state 
function has relatively complex components; for the free particle there is 
no linkage between the components, so a particle is in effect a collection 
of independent scalar particles. At the point the argument for the dimension 
breaks down (rotations do not induce unitary transformations), so does the 
theory's physical reasonableness. 

So the mathematics on which nonrelativistic quantum mechanics is 
based, unlike the relativistic case, allows unphysical results. There is no 
coherent theory that gives only reasonble physics. 

Interactions do mix components of the state function. Consider o-. H~0, 
where ~O is a multicomponent object. If the interaction is invariant, a rotation 
causes a transformation of ~. However, SU(2) has three parameters, CO(3) 
has six. There are many CO(3) transformations going with each one of 
SU(2). A rotation acts on the magnetic field, and also on ~O, and a complex 
angle gives a change of the phase of the field. A complex rotation has 
meaning for the magnetic field (which has a phase in an electromagnetic 
wave). Again there is a product, one factor of which can undergo trans- 
formations, while the other cannot. 

The state function of a particle in a magnetic field depends on H;  its 
phase depends on that of H and is measurable in an interference 
(gedanken ?) experiment, and so the phase of the field is obtained. A rotation 
through a complex angle mixes components and changes phases and so 
has experimental consequences. The three field components are functions 
of six angles, the three complex Euler angles. So the same state function 
can be found in different ways. A particle can interact with many different 
fields and have the same final state. It is impossible for the final state to 
contain complete information about the interaction. 
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Thus, nonrelativistic quantum mechanics is not able to describe a 
system properly, without adjustments; it cannot give a complete theory of 
these interactions, nor of matter. 

It may be surprising that this is not generally known. However, one 
usually does not consider complex rotations (under which Schr6dinger's 
equation is invariant). Also, since systems obey relativistic equations, there 
is only one correct solution (with no ambiguity). This is the one chosen 
without it being explicit that there is a choice. 

The interaction of a spinning particle with a magnetic field is described 
quite well in this framework (we know how to avoid the problems). But a 
complete theory containing everything about any system is not possible; all 
the information cannot be put in. (We do not consider possible mathematical 
contradictions.) Nonrelativistic quantum mechanics does not have enough 
structure to be a complete, coherent, consistent framework [as shown by 
the direct-product description of multiparticle states and the lack of a large 
enough unitary group to give a homomorphism with CO(n)]. It gives 
consistent results in restricted domains; it is an approximation to a more 
complete theory--relativistic quantum mechanics, which its foundations 
require. This is not a complete, coherent, consistent theory either. But it is 
closer. 

4. WHY CLASSICAL PHYSICS IS NOT CORRECT 

If nonrelativistic quantum mechanics is purely phenomenological, can 
classical physics be anything more? Classical physics is not completely 
defined. There is always the (quite unlikely) possibility that with the proper 
definition of terms a complete description of a simple system might be 
found that could be called classical. It would not be experimentally correct 
and there are good reasons why. We indicate some; these make implausible 
a reasonable classical physics. 

In a certain sense classical physics (and nonrelativistic quantum 
mechanics) has been extremely successful. Does this contradict the view 
that it is impossible (as a consistent theory; of course it is quite possible, 
up to a point, as a phenomenological one)? 

Classical physics does not describe the universe beyond a certain level; 
the question is whether it could. There is only one classical interaction, 
electromagnetism (which requires relativity). But this is inconsistent, having 
problems, for example, with infinite energy and radiative reaction; the 
Rayleigh-Jeans law for a black-body gives infinite energy. Thus, there is 
no known consistent classical theory. 

How about simple systems? A collection of point particles interact only 
when they collide. But point particles never collide, and so never interact. 
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A consistent theory of this may be possible, but it is so trivial as to be 
pointless. Also, in flat space there would be infinite dispersal (containing 
walls made of point particles are impossible). Curved space would here 
be an ad hoc assumption; the theory would be at best contr ived--and 
trivial. 

Hard spheres (again having infinite dispersal) could be used, presum- 
ably with no internal structure and infinite hardness; only their momentum 
would change during collisions, not shape or size. A system of infinitely 
hard, finite-size objects would raise questions (including those about 
assumptions of coefficients of restitution, and sizes and shapes/being 
ad hoc). There are no bound states, so even if we regarded the system as 
possible and consistent, it would give a trivial universe. 

Another possibility is point particles with attractive forces (repulsive 
forces would cause them to move infinitely far apart in a flat space; curvature 
would again be contrived). Anything more than 1/r  k would introduce 
arbitrary distances (even k is arbitrary). There are problems with instan- 
taneous action at a distance unless we introduce fields, but then we get into 
questions such as radiation reaction, and so on. Also, there are problems 
with infinite energy. There is a way of dealing with this--ignore it. This is 
reasonable for phenomenological theories, but not for complete and con- 
sistent ones. 

For Coulomb potentials matter would collapse (see Lieb, 1976, for 
review), except for the Pauli exclusion principle, which is not relevant to 
a classical theory. The analysis is quantum mechanical (and three- 
dimensional), leaving a slight possibility that there could be stable classical 
matter if parameters were chosen correctly, but there is no reason to think 
so. A universe that collapsed to a point would not be interesting. 

Thus, except perhaps for trivial, uninteresting, artificial cases, classical 
physics is unlikely to provide a framework for a reasonable theory of matter; 
even simple models run into difficulties. It is useful as pure phenomenology 
in certain domains, but cannot be pushed beyond that. It is not an alternate 
framework to quantum mechanics that happens to disagree with experiment, 
and is not incomplete, because there is no theory of matter to use with it. 
Rather, classical physics is an inadequate and so impossible setting for 
theory of any realistic universe; it does not have a rich enough structure 
for that. 

What is wrong? Classical physics suffers the same problems as non- 
relativistic quantum mechanics (where relevant), but there are worse ones. 
Consider the functions describing a free particle, velocities and the 
Hamiltonian, say. These, by translation invariance, are required to be 
eigenfunctions of the momentum operators, p - d / d x .  They are, but 
the eigenvalues are all zero; they are all constant. Thus, momentum 
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operators (with similar difficulties for angular momentum) are realized 
trivially (so the representations of the Galilei group are limited). 
This is insufficient. 

The states, the group representation basis vectors, need labels that 
describe the system, such as momentum and angular momentum. This is 
not sufficiently possible in classical physics. To express properly the trans- 
formation properties required by the nature of space, systems should be 
completely labeled by eigenvalues of the group over space. But there is no 
way of distinguishing in this manner a particle with one momentum from 
that with another. Thus, classical physics cannot even properly describe the 
simplest case, a single free particle. 

Why does this matter? Interactions change the state of a system; acting 
on one basis vector, they give another. However, this cannot be done here, 
for there is no way properly to describe the state. There is no basis vector 
on which an interaction can act (the objects of classical physics are numbers, 
not basis vectors). Thus, interactions can be included in the framework only 
phenomenologically. 

As the example of the momentum operators shows, classical physics 
is not rich enough to describe nature fully. One reason it cannot encompass 
a complete theory is that it cannot properly express a fundamental property 
of  space, how it is transformed. 

So quantum mechanics is not arbitrary. It seems (and probably is) 
necessary. 

Neither nonrelativistic quantum mechanics nor classical physics 
provides counterexamples to the present considerations. 

5. GROUP THEORY AND THE FOUNDATIONS OF 
QUANTUM MECHANICS 

Group theory and consistency imply that neither classical physics nor 
nonrelativistic quantum mechanics is coherent and completeable. Can they 
say more? To understand how much of the formalism comes from these 
requires detailed analyses and studies of experiment and measurement, 
which is not possible here. We only indicate how this type of analysis might 
provide deeper insight. 

The way to construct a more complete theory is clear (especially since 
we know the answer). Objects transform under the inhomogeneous group 
of  the space. The operators of  this group are realized (most simply, although 
if we did not know the answer, might we use other realizations, if possible?) 
as first-order differential operators (the objects are functions of space). So 
momentum p ~ i d / d x ,  with the i to give bounded eigenfunctions. 
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From translation invariance a free-particle state function (a basis vector 
of an inhomogeneous-group representation, with diagonal inhomogeneous 
operators, p's) is expandable in terms of translation eigenfunctions. A 
state-function (or operator, the picture is irrelevant) at a point is given by 
the one at the origin acted on by translations. 

That p2 is an invariant (called mass--giving the Klein-Gordon 
equation) gives the relationship between momentum and velocity. In the 
rest system E = m (c, like h, is just a conversion factor). Momentum and 
energy in other systems are given by Lorentz transformations; this gives 
their dependence on velocity (the expressions for momentum and energy, 
the generator eigenvalues, as functions of the transformation parameter v 
are completely group-theoretic). The free-particle wave function gives the 
relationship between momentum and wavelength, and energy and 
frequency. 

Thus, the fundamental kinematical variables must be related as they 
are because of the transformation properties of space. These are not assump- 
tions; they come from the requirements on the formalism. 

Why does the state function give a probability? Consider a free particle 
described by a wave packet - -a  function of space with various momenta, 
thus velocities (from this discussion and Fourier analysis). We repeatedly 
prepare a particle with the same velocity and position distribution and then 
measure the position at a different time. If all second positions were the 
same, the velocities and positions would be known exactly for the first 
measurement. But the state function depends on different velocities--the 
second positions must vary. The state function would then (can there be 
another choice?) give the number of times each position was found, its 
probability. The crucial point is that consistency requires different results 
for the value of the same quantity measured in a series of identical 
experiments. 

The probability depends on the absolute value of the state function. 
Why? It has to be determined through many measurements, so the phase 
averages to zero. Why the square? An operator on a function gives a number 
times a function. An expectation value (a representation matrix element; 
so the function appears twice) is a number, not a function. To eliminate 
the function, we take its product with another function, for diagonal ele- 
ments with itself, giving the square. 

The expectation value is the number of states with the same eigenvalue 
times the value, summed over all values (and normalized). So the number 
of states having a particular eigenvalue--the probabil i ty--depends on the 
state function squared. Thus, the probability is proportional to the state 
function squared and, since the phase averages to zero, the absolute square 
of the state function. 
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This does not rigorously show that a state function has to be interpreted 
as giving a probability, but there seems no alternate interpretation, so a 
consistent formalism might actually require this. 

Is spin required? Not for the counting arguments for the dimension, 
since they hold for nonzero orbital angular momentum (which would be 
difficult to avoid). But there cannot be only scalar particles (taking all 
coordinates symmetrical). 

There are relations between momentum eigenvalues since a function 
of them is invariant. The Hamiltonian, whose eigenequation gives the wave 
equation, must be a function of the others. It is proportional to the first-order 
derivative in the time and by symmetry all coordinates enter in the same 
way, so the Hamiltonian depends on first-order derivatives with respect to 
each coordinate. The wave equation is invariant, and so is Fi d/dxi, where 
the F's are operators (they cannot be pure numbers, for then p2, calculated 
from these p's, would not be an invariant), and so can be represented by 
matrices. The F's are shuffled by rotations if the equation is invariant; the 
components of  the F's, which must have several components, must be mixed, 
and so, therefore, must those of the state functions on which they act. There 
are no operators that give only scalars, since they would have only a single 
component.  Nonzero spins must appear if there are any particles at all. 

Thus much (all?) of  the formalism of quantum mechanics follows from 
consistency, invariance, and assumptions (difficult to avoid) about the 
realization of  the group operators; it is not arbitrary. This does not (yet) 
give a complete theory (no complete theory is known), but does lead to the 
dimension, relativity, and places strong restraints on how we describe nature. 

So quantum mechanics, which seems to pose serious puzzles and 
paradoxes, may really be a simple, comprehensible theory (Mirman, 
1973a,b, 1985), completely natural. 

If two particle (of  equal mass in the center-of-mass system, for 
simplicity) collide, conservation of the four components of momentum for 
masses of  the particles unchanged requires that the magnitude of the 
three-momentum be unchanged. Thus, the only result of the interaction 
would be a change in direction. So, anything beyond the most trivial physics 
in relativistic quantum mechanics leads to particle creation and annihilation, 
thus quantum field theory. 

A Hamiltonian (time-translation operator) eigenfunction that contains 
a two-particle state must be a sum of states with different numbers of 
particles. This implies the machinery of field theory. Of course, quantum 
field theory has its own consistency problems. It is not a complete, consistent, 
coherent theory either. At present all theories are phenomenological,  some 
more than others. 
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While these consistency arguments help us understand why the universe 
is described by quantum mechanics, and why it has the form and meaning 
it does, we should be careful about pushing this too far. Otherwise, we will 
show that the current theory is the only one possible, at which point 
experiment will show that it is wrong. However, these arguments help clarify 
how the various parts of  the theory are related, and they indicate underlying 
reasons for the nature of  the universe. 

6. WHAT MUST WE ASSUME ABOUT PHYSICS!  

Relativity, quantum mechanics, field theory, the dimension and sig- 
nature of  space, and probably much else are implied or required by proper- 
ties of  space, matter, and physical laws so basic that it seems unthinkable 
for them to be different. It may be (although it is probably unprovable) 
that a consistent universe is unique. 

These results are founded on assumptions about nature and how we 
understand it. What are they? Undoubtedly, there are many we do not 
realize. I f  we cannot recognize all our assumptions, as of course we cannot, 
it is still useful to state those we can, no matter how vague they may be, 
or how vaguely they must be presented; there are many fundamental  
problems in this area that need study, and perhaps listing some here will 
at least stimulate further thought. 

I assume all standard mathematical principles and formalisms (an 
assumption about what mathematical formalism correctly describes the 
physical universe) whatever this may involve and attempt to list the physical 
assumptions. Not  all are needed to obtain each result. 

A. First is the existence of observers. Living, intelligent observers are 
essential for physics to have meaning. However, while these assumptions 
may be essential for intelligence, even for life, we wish to find those essential 
for physics- - for  a set of  consistent laws governing the universe. Observers 
are objects that have properties with respect to which the properties of  other 
objects can be measured such that the relationship between the properties 
can be defined in a consistent way. Spin or momentum of a particle 
determines a direction, for example. This, especially the definition of frames 
using quantum mechanical particles, has been discussed previously 
(Mirman, 1975). 

B. Mathematically, coordinate systems can be defined in a space. We 
assume these can be defined physically and that it is possible to have 
observers in many of them-- there  is no physical reason why they cannot 
exist. (The question of whether this last sentence makes one statement or 
two is left open.) That is, we assume physical objects with different values 
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of a quantity (say, particles with different momenta  or spin directions). 
Each set of  values defines a frame of reference (thus the momenta  of  a set 
of  particles determine a system). We assume that there are t ransformed 
observers, physical objects- -whatever  these may be - - in  different systems 
(that is their existence would not lead to contradictions). Observers might 
exist in only a subset of  sys tems--we can define mathematically the values 
of  a quantity that no physical object can have; superluminal frames are 
mathematically definable, but cannot contain physical objects. 

We do not require that the laws of physics be the same in all systems, 
only that it be possible to make, and compare,  measurements with respect 
to different ones and that the results in one system be a function of those 
in another. The function, assumed determinable, depends on the relationship 
between the systems (the angles, say). We require that these relationships 
not lead to inconsistencies. 

Also we assume (without analyzing the physics involved) that the 
transformations between coordinate systems (observers) form a group, a 
Lie group (presumably with transitive action). 

We expect there to be quantities transforming as the coordinates (veloc- 
ity and momentum,  say) and others (like spin) affected by a state-function 
transformation. We require that ( there  are) scalar products of  these (that) 
are invar iant- - they transform as the identity representation, an invariant 
of  the group over space. The requirement is not that products have the 
same values in all systems, but that they be the same functions of  the 
variables. Without such products peculiar, if not impossible, physics, and 
also mathematical  inconsistencies, are likely. 

An alternate requirement is that the equations of  motion (the Dirac 
equation, for example) be form-invariant under transformations. 

I f  scalar product  is not invariant in a transformed system, it does not 
go into the same function with a different value, but into a different function; 
observations in different systems would be markedly different and likely 
inconsistent. This invariance requirement may have hidden assumptions. 
Invariance is ascertained by measurement  requiring physical laws that 
prescribe the measurement  process. I f  these were to change too radically, 
presumably invariance would become meaningless. Even such requirements 
as the number  of  particles looking the same for transformed observers brings 
in (hidden) assumptions about laws and measurement.  

C. I f  not every system need have observers, every group generator 
must connect systems in which they are possible. Otherwise we could rotate 
around some axes, but not all; we would not be able to rotate in the xy  

plane without (at least) also rotating in the zt  plane. Rotations would be 
impossible without also causing an object to move. There would be no 
observers at rest with axes different from some fixed one. The spins of  
electrons at rest would all be in the same direction. There would be no 
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physical meaning of, or consistent way to measure with respect to, other 
axes. I f  observers in all systems were not possible, either there could be no 
objects whose spin would point in any direction except for a fixed one or, 
if there were such objects, angles (and scalar products) could not be 
measured with respect to them. Space would not be isotropic. Consistency 
would be doubtful. 

D. Space is defined using the transformation group (perhaps this is 
more fundamental);  a basis vector of a (linear) representation is defined at 
one point, and the vector at another point (which is close enough to the 
first so that we can regard space as fiat) is given by a translation operator. 
So the vector is a function of parameters,  taken as the coordinates. Thus, 
it is fundamental  that it be possible to relate the states at different points 
by means of group operators. 

E. There are representations with bases on which the generators give 
eigenvalues interpretable as describing particles. There are also multiparticle 
states; product representations whose eigenvalues can be interpreted as 
quantities describing a set of  particles and have eigenvalues of operators 
that can be interpeted as describing each of the particles. What particles 
are or whether they are necessary is not considered. But to describe the 
physical reasons for mathematical  procedures and assumptions particle 
terminology is used. 

The homogeneous part of  the group algebra is taken as decomposable 
into a product  of realizations, each describing a single particle; the gen- 
erators are sums, each term acting on a single particle (changing a relation- 
ship, e.g., distance or angle, between particles). 

The argument above that the state function gives a probability assumed 
that values at one point and time are related to those at another by means 
of state-function transformations, which is natural when considering parti- 
cles and their coordinates and momenta.  How serious this assumption is 
remains unclear that is, can there be consistent physics in which there are 
no such things as particles, and in which the experiments considered were 
not possible? Continuous fluids are often reasonable approximations. But 
is it possible to have a complete theory based only on them, one in which 
every possible question can be answered using only a small number  of 
properties ? 

F. The particles are assumed to interact (it would be a dull world 
without interactions). That is, the translations are nonlinear operators; they 
are nonlinear functions of  basis vectors (nonlinear in that acting on one- 
particle states they produce sums of these plus multiparticle states; in the 
language of  potentials, the state function, a function of space, is multiplied 
by another function of space, the potential). In particular, the time-transla- 
tion operator  acting on a state gives a linear combination of the same plus 
other states. 
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This whole analysis rest heavily on the existence and properties of 
transformations, raising the question of why they are so central. Consider 
an object defining a coordinate system (Mirman, 1979); the momentum is 
determined by the system the particle is in, but the momentum can also be 
taken to be one of the values defining the system (Mirman, 1979). The 
object undergoes interactions that change its properties, therefore changing 
the coordinate system it defines; we can measure with respect to the particle 
before or after an interaction. If  there were not a set of allowable systems, 
it would be impossible for an object to move from one to another, implying 
that it could not undergo interactions, or that any interaction would so 
change the object that while it was possible to measure with respect to it 
before, it was not possible afterward, which is likely to be meaningless. 

Thus, the existence and properties of  transformations are implied by 
the existence of interactions. This cannot be explained now, but it is 
reasonable that this analysis can be redone without transformations to show 
that a set of  equations describing interacting objects, rich enough to give a 
reasonable physics, can be consistent only under the conditions found here. 

The Dirac equation with interactions, while not analyzed from this 
point of view, likely can only be consistent in 3 + 1 dimensions. 

This implies that a coherent dynamical theory probably cannot be 
independent of a theory of  matter. The conditions (many may not yet be 
known) may be such that we cannot write down an equation of motion and 
put in arbitrary interaction terms; the equations and interactions are unique. 

So the essential point is not transformations, but consistency. Transfor- 
mations are a way of probing its consequences, but perhaps not the only 
way. Or perhaps transformations and symmetry represent the essence of 
interactions and their effects and so may have special significance. Again 
this is worthy of more study. 

7. DISCUSSION 

What, and how strong, are the constraints on possible physical laws? 
Why do they exist? Are they simply the result of  the way we look at the 
world, of our own patterns of thought and neural organization? Or might 
there be actual restrictions (how limiting?) on nature, on possible laws and 
universes ? 

Ultimately these questions are unanswerable. Yet it is possible to 
understand the constraints on our formalism (self-imposed?) and on the 
universe it can describe and to derive many properties of  nature. It is also 
possible that our formalism has (or must have) within it such strong 
restrictions that it can describe only a single universe. 
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The laws of physics are consistent and coherent, and simple. This is 
hardly surprising, but it is strongly emphasized by these results. The 
dimension and signature of  space are determined by very basic principles 
through several, closely related, conditions. I f  any of these was not satisfied, 
it is doubtful that there could be consistent laws of physics, thus a consistent 
universe. Yet they all hold, and all give the same result. 

The universe is highly improbable.  But it exists. 
This suggests some interesting speculation. There is a view that the 

reason the universe is hospitable to life and intelligence is that otherwise 
we would not be here to know how hospitable it is. And of course in a way 
this is true. In an oscillating universe in which conditions and perhaps laws 
change in each cycle, it is reasonable that occasionally there will be a cycle 
in which intelligence exists. And the intelligence will then discover that the 
laws of nature give a universe hospitable to intelligent life. 

However,  the present considerations suggest that the laws are severely 
limited, they can change at most slightly from cycle to cycle; that there is 
even a possible dimension that allows the universe to exist seems accidental. 
Unless the laws of arithmetic can change also between cycles, this approach 
seems unable to provide an explanation for there being any universe at all. 

Or, could it simply be that many universes are possible and that our 
formalism is designed to describe the one in which we live? It can describe 
no other, but that is its fault, not that of  the universe. 

Transformations and coherence lead to quantum mechanics, relativistic 
quantum mechanics, and field theory. But none of these is rich enough to 
allow a complete theory of matter. Perhaps the search for such a theory 
should be guided by one general, quite useful principle, consistency. 
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